AIプロンプト: アナリティクス&インサイト

解釈のないデータはただのノイズです。これらのプロンプトは、マーケティング指標を理解し、重要なパターンを見つけ、数字をビジネスを成長させる判断に変える手助けをします。ChatGPT、Gemini、Claudeでテスト済みなので、データについて最も明確に考えるモデルがわかります。

最終テスト日 Feb 15, 2026 · モデル: GPT-4o, Gemini 2.0, Claude 3.5 Sonnet, Grok 2
やりたいこと プロンプト 最適な用途
マーケティングダッシュボードを設計する ダッシュボード設計 Gemini
キャンペーンデータを解釈しインサイトを見つける キャンペーン分析 Claude
適切なアトリビューションモデルを選択し実装する アトリビューションモデルアドバイザー ChatGPT
時間経過に伴う顧客行動を分析する コホート分析ビルダー Gemini
コンバージョンファネルの離脱ポイントを発見し修正する ファネル漏れ検出 Claude
エグゼクティブ向けマーケティングレポートを作成する 月次レポート生成 ChatGPT

ダッシュボード設計

マーケティングダッシュボードを設計する

I need a marketing dashboard for [business type].

Channels I use: [list marketing channels]
Reporting frequency: [daily/weekly/monthly]
Audience for dashboard: [who sees this — CEO, marketing team, client]
Current tools: [Google Analytics, HubSpot, etc.]
Biggest question leadership asks: [what they always want to know]

Design a dashboard with:
1. 5-7 KPIs that belong on the top row (with target benchmarks)
2. Supporting metrics organized by channel
3. The exact charts/visualizations for each metric (line, bar, pie, etc.)
4. Comparison views: this period vs. last period, and vs. goal
5. One 'early warning' metric that predicts problems before they happen
6. A 3-minute walkthrough script for presenting this dashboard

最適な用途: GEMINI

Geminiは最も実用的なダッシュボードレイアウトを設計し、Google Data StudioやExcelですぐに構築できるフォーマットを提供します。

テスト済み Feb 15, 2026

プロのコツ

ダッシュボードに表示するKPIは5つ以下に絞りましょう。情報過多のダッシュボードは誰も見なくなります。

キャンペーン分析

キャンペーンデータを解釈しインサイトを見つける

Analyze these campaign results and tell me what to do next:

[Paste campaign data: impressions, clicks, conversions, spend, CTR, CPC, ROAS, etc.]

Campaign type: [paid ads/email/social/content]
Campaign goal: [awareness/leads/sales]
Budget: [total spend]
Time period: [how long the campaign ran]
Benchmarks: [industry averages if known]

Provide:
1. Performance summary: what worked and what didn't (be specific)
2. The single biggest lever to improve results
3. Budget reallocation recommendation with exact percentages
4. 3 hypotheses for why underperforming elements failed
5. A/B test recommendations for the next campaign iteration
6. A 'stop, start, continue' action list

最適な用途: CLAUDE

Claudeは最も正直なキャンペーン分析を提供し、結果が本当に悪い場合はそう教えてくれます。「やめるべきこと」の推奨が最も実用的です。

テスト済み Feb 15, 2026

プロのコツ

合計値だけでなく、最低2週間分の日次データを含めましょう。AIは曜日パターン、疲労曲線、トレンドの変化を検出しますが、集計データではそれが見えなくなります。

アトリビューションモデルアドバイザー

適切なアトリビューションモデルを選択し実装する

Help me understand which marketing channels are actually driving results.

Channels: [list all active channels with monthly spend]
Sales cycle length: [average time from first touch to conversion]
Conversion tracking: [what I can currently measure]
CRM/tools: [what tools I use for tracking]
Biggest attribution confusion: [what I can't figure out]

Advise me on:
1. Which attribution model fits my business (first-touch, last-touch, linear, etc.) and why
2. How to set up that model in my current tools
3. Channel interactions I'm probably missing
4. A simplified attribution framework I can implement this week
5. What to do when channels can't be directly attributed (brand, content, PR)
6. How to present attribution findings to stakeholders who want simple answers

最適な用途: CHATGPT

ChatGPTはアトリビューションモデルを最もわかりやすい言葉で説明し、ツール固有の設定手順も提供します。マーケティング理論と実装のギャップを埋めます。

テスト済み Feb 15, 2026

プロのコツ

アトリビューションは常に不完全です。完璧なものを目指すのではなく、「おおよそ正しい」モデルをまず構築しましょう。完璧なアトリビューションは意思決定を遅らせる幻想です。

コホート分析ビルダー

時間経過に伴う顧客行動を分析する

Help me build a cohort analysis for [business/product].

Cohort definition: [how to group users — signup month, acquisition channel, plan type]
Key metric to track: [retention, revenue, engagement, etc.]
Time period: [how far back to analyze]
Data I have access to: [describe available data fields]
Goal: [reduce churn / increase LTV / improve activation]

Build:
1. A cohort table structure I can create in [Sheets/Excel/SQL]
2. The exact formulas or queries to calculate cohort metrics
3. How to read the cohort table — what patterns to look for
4. 3 insights that cohort analysis typically reveals (with examples)
5. Actions to take based on common cohort patterns
6. A visual format recommendation for presenting findings to the team

最適な用途: GEMINI

Geminiはコホート分析に最も使えるスプレッドシート数式とSQLクエリを生成します。テーブル構造はGoogle Sheetsに修正なしですぐに使えます。

テスト済み Feb 15, 2026

プロのコツ

獲得チャネル別の月次コホートから始めましょう。この1つの分析で、「最良」のチャネル(最も多い)のリテンションが最悪であることが判明することが多く、予算配分戦略が変わります。

ファネル漏れ検出

コンバージョンファネルの離脱ポイントを発見し修正する

Help me find where I'm losing potential customers in my funnel.

Funnel stages with conversion rates:
[Stage 1]: [name][number entering][conversion rate to next stage]
[Stage 2]: [name][number entering][conversion rate to next stage]
[Stage 3]: [name][number entering][conversion rate to next stage]
[Stage 4]: [name][number entering][final conversion rate]

Industry: [your industry]
Traffic sources: [where visitors come from]

Analyze and provide:
1. Which stage has the biggest leak and why it matters most
2. Benchmark comparison: how my rates compare to industry averages
3. 3 specific fixes for the leakiest stage (with expected improvement)
4. Micro-conversion additions between stages to diagnose friction
5. Segment analysis: which traffic sources have the best/worst funnel flow
6. A 2-week experiment plan to improve the weakest stage by 15%+

最適な用途: CLAUDE

Claudeは最もインパクトの大きいファネル段階を特定し、最も現実的な改善見積もりを提供します。上流の漏れ修正と下流の最適化の複合効果を考慮します。

テスト済み Feb 15, 2026

プロのコツ

収益に最も近い漏れから修正しましょう。ファネル下部の10%改善は、上部の10%改善よりも多くの収益を生みます。ただしAIは数字が大きく見える上部を優先しがちです。

月次レポート生成

エグゼクティブ向けマーケティングレポートを作成する

Generate my monthly marketing report from this data:

[Paste key metrics: traffic, leads, conversions, revenue, spend by channel]

Reporting month: [month/year]
Previous month data: [for comparison]
Goals for this month: [targets that were set]
Report audience: [CEO/board/marketing team/client]

Create:
1. An executive summary (3-4 sentences covering the headline story)
2. Performance vs. goals table with red/yellow/green status indicators
3. Channel-by-channel breakdown with trend arrows
4. Top 3 wins with evidence
5. Top 3 concerns with recommended actions
6. Next month's priorities and projected outcomes
7. One chart recommendation that tells the most compelling story from this data

最適な用途: CHATGPT

ChatGPTは最もわかりやすいナラティブフローでエグゼクティブレポートを構成します。最も重要なストーリーから始めるエグゼクティブサマリーを書きます。

テスト済み Feb 15, 2026

プロのコツ

レポートは「何が起きたか」ではなく「だから何?」から始めましょう。エグゼクティブはデータの要約ではなく、データに基づいて何をすべきかを知りたいのです。

モデル比較

実際のテストに基づいています — 推測ではありません。 テスト方法を見る

G

Gemini

Best for dashboard design and cohort analysis in Google tools. Produces implementation-ready spreadsheet formulas and SQL queries. Less effective at narrative interpretation of data.

結果元: Gemini 2.0 Flash · テスト済み Feb 15, 2026
C

ChatGPT

Best for attribution modeling and executive reporting. Explains complex analytics concepts in accessible language. Tends to oversimplify — push for technical depth when you need it.

結果元: GPT-4o · テスト済み Feb 15, 2026
C

Claude

Best for campaign analysis and funnel diagnostics. Provides the most honest assessment of what data actually tells you vs. what you want it to say. Sometimes over-qualifies conclusions.

結果元: Claude 3.5 Sonnet · テスト済み Feb 15, 2026
G

Grok

Good at spotting non-obvious patterns in data and cutting through vanity metrics to identify what actually matters. Delivers insights with refreshing directness instead of hedging every conclusion. Less focused on data visualization best practices and structured reporting frameworks.

結果元: Grok 2 · テスト済み Feb 15, 2026

NailedItで試す

上記のプロンプトをNailedItに貼り付けて、モデルを並べて比較しましょう。

プロのコツ

1

Measure decisions, not everything. If a metric doesn't change a decision you'd make, stop tracking it. Most dashboards have 30+ metrics and influence zero actions. Ask AI to identify the 5 metrics that actually drive your next move.

2

Compare against yourself, not industry benchmarks. Industry average conversion rates include companies nothing like yours. Your own month-over-month trend is more actionable than knowing the 'average' email open rate for your industry.

3

Always ask 'compared to what?' A 5% conversion rate means nothing alone. Is it up or down? Better or worse than the goal? AI will present numbers as good or bad without context — force it to include comparisons in every data point.